close
標題:
F.2 Maths(20points)
1.(x^4p+1)/(x^p+2)=(3^3p)+(5/y), 其中p是正整數,試以x表示y 2.P=(3v-rt)/(4t+v)-1,把t轉為主項 3.(1/y)=(x-1)/(x+1)+(1/z),把x轉為主項 4.若首n個自然數的平方和1^2+2^2+3^2+...n^2為S,則S可由公式 S=n(n+1)(2n+1)/6求出,利用這公式,求下列各式的值 a)1^2+2^2+3^2...+30^2 b)16^2+17^2+18^2...+30^2
最佳解答:
1.(x^4p+1)/(x^p+2)=(3^3p)+(5/y), X^(4p+1-(p+2)) = (3^3p)+(5/y) x^3p-1 - 3^3p = 5/y y = 5 /(x^3p-1 - 3^3p) 2.P=(3v-rt)/(4t+v)-1 , p+1 = (3v-rt)/(4t+v) (p+1) (4t+v) = 3v-rt 4(p+1)t + (p+1)v = 3v - rt 4(p+1)t +rt = 3v - (p+1)v (4p+r+4)t = (2-p)v t = (2-p) / (4p + r + 4) 3.(1/y)=(x-1)/(x+1)+ (1/z), (1/y) - (1/z) = 1 - (2 /(x+1)) (z-y) /yz = 1 - 2/(x+1) 2 /(x+1) = 1 - (z - y) /yz 2/(x+1) = (y - z + yz) /yz x+1 = 2yz / (y-z+yz) x = 2yz / (y-z+yz) - 1 x = (2yz - (y-z+yz)) / (y-z+yz) x = (z - y +yz ) / (y-z+yz) 4.若首n個自然數的平方和1^2+2^2+3^2+...n^2為S,則S可由公式 S=n(n+1)(2n+1)/6求出,利用這公式,求下列各式的值 a)1^2+2^2+3^2...+30^2 n = 30, S = 30 (30+1) (2x30+1) = 30 x 31 x 61 = 56730 b)16^2+17^2+18^2...+30^2 n = 15, S = 15(15+1)(2x15+1) = 15 x 16 x 31 = 7440 n = 30, S = 56730 (4a 結果) 16^2+17^2+18^2+...+30^2 = (1^2+2^2+3^2+...+30^2) - (1^2+2^2+3^2+...+15^2) = s(30) - s(15) =56730 - 7440 =49290
其他解答:
F.2 Maths(20points)
此文章來自奇摩知識+如有不便請留言告知
發問:1.(x^4p+1)/(x^p+2)=(3^3p)+(5/y), 其中p是正整數,試以x表示y 2.P=(3v-rt)/(4t+v)-1,把t轉為主項 3.(1/y)=(x-1)/(x+1)+(1/z),把x轉為主項 4.若首n個自然數的平方和1^2+2^2+3^2+...n^2為S,則S可由公式 S=n(n+1)(2n+1)/6求出,利用這公式,求下列各式的值 a)1^2+2^2+3^2...+30^2 b)16^2+17^2+18^2...+30^2
最佳解答:
1.(x^4p+1)/(x^p+2)=(3^3p)+(5/y), X^(4p+1-(p+2)) = (3^3p)+(5/y) x^3p-1 - 3^3p = 5/y y = 5 /(x^3p-1 - 3^3p) 2.P=(3v-rt)/(4t+v)-1 , p+1 = (3v-rt)/(4t+v) (p+1) (4t+v) = 3v-rt 4(p+1)t + (p+1)v = 3v - rt 4(p+1)t +rt = 3v - (p+1)v (4p+r+4)t = (2-p)v t = (2-p) / (4p + r + 4) 3.(1/y)=(x-1)/(x+1)+ (1/z), (1/y) - (1/z) = 1 - (2 /(x+1)) (z-y) /yz = 1 - 2/(x+1) 2 /(x+1) = 1 - (z - y) /yz 2/(x+1) = (y - z + yz) /yz x+1 = 2yz / (y-z+yz) x = 2yz / (y-z+yz) - 1 x = (2yz - (y-z+yz)) / (y-z+yz) x = (z - y +yz ) / (y-z+yz) 4.若首n個自然數的平方和1^2+2^2+3^2+...n^2為S,則S可由公式 S=n(n+1)(2n+1)/6求出,利用這公式,求下列各式的值 a)1^2+2^2+3^2...+30^2 n = 30, S = 30 (30+1) (2x30+1) = 30 x 31 x 61 = 56730 b)16^2+17^2+18^2...+30^2 n = 15, S = 15(15+1)(2x15+1) = 15 x 16 x 31 = 7440 n = 30, S = 56730 (4a 結果) 16^2+17^2+18^2+...+30^2 = (1^2+2^2+3^2+...+30^2) - (1^2+2^2+3^2+...+15^2) = s(30) - s(15) =56730 - 7440 =49290
其他解答:
文章標籤
全站熱搜
留言列表